f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
↳ QTRS
↳ RRRPoloQTRSProof
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
Used ordering:
h(X) → c(n__d(X))
POL(activate(x1)) = x1
POL(c(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = 2·x1
POL(g(x1)) = x1
POL(h(x1)) = 2 + x1
POL(n__d(x1)) = x1
POL(n__f(x1)) = 2·x1
POL(n__g(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
ACTIVATE(n__d(X)) → D(X)
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__g(X)) → G(X)
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
C(X) → D(activate(X))
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE(n__d(X)) → D(X)
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__g(X)) → G(X)
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
C(X) → D(activate(X))
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
ACTIVATE(n__f(X)) → ACTIVATE(X)
POL(ACTIVATE(x1)) = x1
POL(C(x1)) = x1
POL(F(x1)) = 2 + 2·x1
POL(activate(x1)) = x1
POL(c(x1)) = x1
POL(d(x1)) = x1
POL(f(x1)) = 2 + 2·x1
POL(g(x1)) = x1
POL(n__d(x1)) = x1
POL(n__f(x1)) = 2 + 2·x1
POL(n__g(x1)) = x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
ACTIVATE(n__f(X)) → F(activate(X))
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__f(X)) → F(activate(X))
Used ordering: Polynomial Order [21,25] with Interpretation:
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
POL( C(x1) ) = x1
POL( f(x1) ) = x1 + 1
POL( c(x1) ) = max{0, -1}
POL( n__g(x1) ) = max{0, -1}
POL( g(x1) ) = 0
POL( n__f(x1) ) = x1 + 1
POL( activate(x1) ) = x1
POL( d(x1) ) = 0
POL( n__d(x1) ) = 0
POL( ACTIVATE(x1) ) = x1
POL( F(x1) ) = x1
activate(X) → X
g(X) → n__g(X)
f(X) → n__f(X)
c(X) → d(activate(X))
f(f(X)) → c(n__f(n__g(n__f(X))))
activate(n__d(X)) → d(X)
activate(n__g(X)) → g(X)
activate(n__f(X)) → f(activate(X))
d(X) → n__d(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F(f(X)) → C(n__f(n__g(n__f(X))))
C(X) → ACTIVATE(X)
f(f(X)) → c(n__f(n__g(n__f(X))))
c(X) → d(activate(X))
f(X) → n__f(X)
g(X) → n__g(X)
d(X) → n__d(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(X)
activate(n__d(X)) → d(X)
activate(X) → X